胆囊息肉

注册

 

发新话题 回复该主题

卫星通信行业深度报告空天信息产业迎来黄金 [复制链接]

1#
盖百霖遮盖液 http://www.jk100f.com/baidianfengzixun/baidianfengazhiliao/m/946.html

(如需报告请登录未来智库)

1、空天信息产业迎来*金十年

信息技术产业已经走过主机时代、互联网时代、移动互联时代,现已进入空天信息时代。空天信息产业是迈入全互联时代涌现的前沿新兴信息产业形态,也是支撑产业和社会数字转型的重要产业,更是引领全球经济发展主线的重要基础设施。空天信息产业是移动互联时代之后的新阶段。

以卫星通信、卫星遥感、卫星导航为代表的太空领域是*用和民用发展的重点领域,空天信息已广泛应用于国家安全、经济建设和大众民生的诸多领域,不仅具有*民共用的特点,也拥有巨大的市场价值。在*事上空天信息网络甚至可以起到类似战略导弹的致命拦截作用。空天信息网络面向*府和公众可提供六项典型场景应用:应急救灾保障、信息普惠服务、移动通信服务、航空网络服务、海洋信息服务、天基中继服务。

空天信息产业的*策环境越来越友好。从*策上看,我国鼓励空天信息产业的发展大致有两条主线:其一为相关*策从规划卫星制造到规划整体的空间基础设施建设;其二为鼓励商业航天大力发展,鼓励民营资本参与到建设。此外,航天法已经列入全国人大立法计划,力争在未来3-5年出台。从各类相关*策可知,国家在顶层设计方面已为空天产业蓬勃发展奠定了良好的基础,同时结合航天任务的规划数量和航天技术及基础设施的不断完善,我国空天信息产业已进入了发展的*金十年。

1.1建设通导遥一体的空天信息网络成为我国迫切需求

近年来,我国地面和空间信息网络建设已取得瞩目发展。截至年12月底,中国网民规模达8.29亿人,互联网普及率达到59.6%,已经基本建成了覆盖全国的地面网络;航天技术发展也取得了巨大成就,以北斗卫星导航系统和高分辨率对地观测系统为代表的国家空间信息基础设施取得长足进步,截至年12月底,我国在轨卫星数量已超过余颗,已经初步建成了通信中继、导航定位、对地观测等系统,通导遥融合发展态势基本形成;空天信息的全面性、灵活性、时效性和准确性大幅提升,定时、定位和遥感观测的综合应用服务日益丰富。

但随着国民经济飞速发展和各类新兴技术的普及,我国对空天信息也有了更高层次的需求。覆盖面上,我国对导航、遥感等天基信息的需求覆盖范围已从国内拓展到全球;在速度上,对空间信息的获取-传输-处理的响应速度趋向实时化,对海量天基信息的传输-处理-分发的时效性提出了新的要求。要实现天基信息全天时、全天候、全地域服务于每个人的目标,根本上解决现有天基信息系统覆盖能力有限、响应速度慢、体系协同能力弱的问题,亟需构建更为强大的卫星通信、导航、遥感一体天基信息实时服务系统。

国防方面,武器装备的飞速发展和作战模式的改变也为空天信息提出了更高层次的需求。从反导的角度来看,战争中反导的难度已越来越大。以超高音速导弹为例,提升防御超高音速的导弹的成功率需要在发展准备阶段就密切跟踪,这便需要防御方拥有足够强大的空天信息网络。我们可以从美国太空发展局(SDA)提交的预算草案可以窥见当前空天信息网络与*事需求之间存在的巨大差距。据美国航天新闻网10月7日报道,根据美国太空发展局计划~财年投资亿美元,用以部署*用大型卫星星座:“国防太空架构”(NDSA)。亿美元预算主要分为两大部分:5.82亿美元为基线预算,用于NDSA路线图开发以将国防部现有太空项目融入NDSA,同时用于导弹防御传输层传感器的研究和样机开发;亿美元用于“卫星层”建设,用于研究、设计、开发与测试大型*用卫星星座。

1.2空天地一体化信息网络逐渐形成

20世纪80年代至90年代,美国成功部署了跟踪数据中继卫星(TrackingandDataRelaySatellite,TDRS)系统,TDRS被称为“卫星的卫星,其中,多址链路是TDRS的重要组成部分,美国的TDRS多址链路技术演变分为三个阶段:

第一代TDRSS系统的多址体制采用空分多址结合码分多址方式,星上采用一个S频段多址相控天线,具有30个阵元,全部用作接收阵列,发射阵列山其中的12个具有收发双工性能的阵元承担,在通信过程中,只需24个接收阵元、8个发射阵元即可达到TDRSS通信要求。系统采用空分多址和码分多址方式,在一个波束内的用户采用伪噪声码分多址技术,每个信道最大速率可达到50kb/s。其空分多址的波束形成是在地面完成的,各个人线单元接收到返向链路的信号,经过低噪放等处理过程送给星上处理器,并将信号频分复用(频点间隔设置为7.5MHz后形成中频信号,再通过上变频处理将信号从K频段传输下去送给地面基站,在地面接收到多个阵元的信号进行波束形成;

第二代TDRSS系统星上采用的多址天线为S频段六角形相控阵模式,并且因为星上形成波束,天线增益提高约6dB,返向链路为32条,前向链路为巧条,系统增强了多址业务返向能力,占用2.0G~2.3Ghz波段进行多址访问,前向链路的数据传输率为Kbit/s,并能以传输速率3Mb/s同时接收五个用户星的信息;

空天信息网络第三代TDRSS完成了空间对接、高覆盖率和返回着陆等方面的卫星测控任务,并能够做到对于图像信号的实时传输,关于其多址链路技术,最近美国提出了按需接人的第三代中继卫星地面合成方案,第三代多波束合成方案采用地面接收DBF多波束合成技术,可以满足更多用户按需接址的通信要求。

2.同步轨道卫星和地面通信有固定限制,低轨通信卫星更适合现代通信

同步轨道卫星(GEO)在地球赤道上空km的圆形轨道运行,卫星绕地球运行周期与地球自转同步,卫星与地球之间处于相对静止的状态。为保证卫星与地球同步运作,卫星只能被发射到赤道轨道面的特定高度,致使可容纳卫星数有限且信号不能覆盖极地地区。由于轨道高度过高,同步轨道卫星的波束覆盖区大,使频谱利用率低。同步轨道卫星通信延迟差达到ms,和地面基站相比大大增加。另外,地球同步轨道卫星的发射困难,技术复杂;由于许多发射卫星的国家没有赤道附近领土,不可能在赤道上建立卫星发射场,因此卫星要经过几次的轨道变换才能成功,难度大大增加。加上地球同步轨道卫星体积大,重量大,发射时间长,使发射成本高。

同时地面通信系统覆盖范围小的多,4G基站覆盖范围为1-3km,而5G基站覆盖范围仅为-米,基站建设和运营成本很高。此外,建设基站易受到地形和环境影响,在环境恶劣的沙漠、海洋、极地等地区地面通信系统建设成本高昂,无法实现全球覆盖。

低轨小卫星一般指高度在到1公里范围内,重量在0kg以下的现代卫星。对用户而言,轨道高度的降低使通信延时缩短,数据传输率提高。由于低轨卫星可以不受地形和环境限制,因此与传统地面基站通信相比覆盖范围大大提升,可以真正做到全球无缝接入。低轨卫星传输损耗小的特点使用户终端小型化成为可能。对运营商而言,卫星体积小、重量轻,发射成本和同步轨道卫星相比大大降低。另外低轨卫星系统频谱利用率高最大单向传输延时和最大延时差和地球同步轨道卫星相比都大大减少,与地面传输手段的延迟较为接近。虽然目前低轨通信卫星仍存在需要卫星数量多、维护困难等问题,但随着以技术手段的进步和以SpaceX公司为代表的可重复使用运载火箭的开发,低轨卫星的发射和管理成本将大大降低。

3.低轨通信卫星技术趋于成熟

3.1困扰早期以铱星星座为代表的低轨卫星系统的技术壁垒逐渐消除

“铱星”星座系统是美国摩托罗拉公司于年提出的一种利用低轨道星座实现全球个人卫星移动通信的系统,它与现有的通信网相结合,可以实现全球数字化个人通信。“铱星系统”区别于其他卫星移动通信系统的特点之一是卫星具有星间通信链路,能够不依赖地面转接为地球上任意位置的终端提供连接,因而系统的性能极为先进、复杂,这导致其投资费用较高。

星座的构型为玫瑰星座,卫星均匀部署在南北方向km高的6条极轨近圆轨道上,轨道倾角为86.4°。每颗卫星载有3个16波束相控阵天线,其投射的多波束在地球表面形成48个蜂窝区。每颗卫星拥有4条Ka频段的星间通信链路,两条用于建立同轨道面前后方向卫星的星间链路,星间距离~km;两条用于建立相邻轨道面间卫星的通信链路(仅适用于纬度68°以下地域),星间距离~km。异轨道面间链路的天线可根据加载到卫星上的星历信息进行指向调整,波束宽度足以适用纬度控制和卫星位置保持的容差。卫星在轨重量kg,工作寿命5~8年。

由于低轨卫星通信系统也存在固有的缺点,如需要卫星数量较多,由此带来地面控制、维护系统比较复杂,对通信而言,影响较大的问题是波束切换和星间切换。低轨卫星相对地球高速运动,使得终端在通信过程中需要频繁的切换到其他波束或卫星上才能继续通话,即使当时设计方案最完整最有前景的的铱星系统仍无法克服:

技术方面,受当时设备性能制约,系统切换掉话率高达15%,严重影响通话质量,并且数据传输速率仅有2.4kb/s,其最小切换时间间隔10.3秒,平均切换时间间隔.7秒。由于早期低轨卫星通信系统的带宽资源不能满足切换呼叫最低的带宽要求铱星系统在运行初期的切换成功率只有85%,经过改进后仍然只有92~98%,与陆地移动通信系统的切换掉话率不高于0.05%的指标相差甚远。

1)成本方面,铱星系统需要在获得第一笔订单之前就建成全部系统,风险很高,而地面通信网络的建设可以逐步进行,可以在回收一部分投入之后逐步扩建系统;

2)系统能力方面,铱星在系统设计时确实先进,但此后蜂窝电话发展极其迅速,待到铱星服务之后,技术已经落后,铱星电话的笨重、室内无法使用、通话的可靠性和清晰性低的缺点凸现出来。

但随着近二十年来通信技术、微电子技术的飞速发展,通信系统信号处理能力、通信带宽不断提升,从目前仍在运行的铱星二代、全球星等低轨卫星通信系统使用情况来看,困扰早期铱星系统的掉线率高等技术问题已经得到有效解决,为低轨卫星通信的普及应用扫清了障碍。

3.2空天信息产业链迅速发展助力成本降低

在卫星制造成本和发射成本高居不下的时代,低轨道卫星星座不具备经济可行性。然而,随着技术的进步,卫星的体积、质量、成本逐年下降,可靠性、集成度逐年提升。加之近年来,越来越多的企业(包括民营企业)涌入中小型运载火箭行业,使得火箭发射供给快速提升,成本大幅下降。在此环境下,低轨道小卫星星座的大规模部署初步具备先决条件。

1)火箭发射成本

美国航天探索公司SpaceX,目前已经成功开发出可重复使用的猎鹰1号、猎鹰9号、重型猎鹰等可重复使用的运载火箭和拥有载人能力的龙飞船。公司可回收火箭近期发射屡获成功;年1月30日,SpaceX公司用“三手火箭”将第四批共60颗星链卫星送入轨道,随着公司技术的不断发展,猎鹰9号火箭单次发射成本大大降低,使更多低轨小卫星被送入太空成为可能。

未来,随着以SpaceX为代表的商业可重复使用运载火箭的开发,可以使猎鹰9运载火箭的单次发射成本稳定在0万美元左右;按照每次发射60颗近地小卫星计算,单颗星链卫星的发射成本将降低到每颗50万美元左右,成本大大降低。

2)小卫星制造成本

另外,同步轨道卫星寿命一般在10-15年,而低轨小卫星寿命在5-8年,较短的寿命决定了小卫星较高的更换频率。随着卫星发射技术的进步,使以SpaceX为代表的商用卫星发射公司成为可能,而越来越多的企业进入航天领域,又进一步促进了卫星和发射技术的升级,从而形成了一种“技术进步降低成本→更多力量参与研发生产→技术进步进一步降低成本”的正向循环。

3)整体通信系统建设成本

根据Wind数据,年中国4G用户规模为12.1亿户,目前中国境内4G平均网速是3.61M/s;截至年5月,全国共建成万个4G基站,每个基站可供最多终端接入;中国三大运营商在4G网络上的建设至少在亿规模。随着5G的应用,每个5G基站建设费用约是48万元;而由于5G基站覆盖范围仅为-米,远远小于4G基站的1-3km范围,建设成本会比4G更高。

根据《美国典型小卫星项目创新管理模式分析》,每颗kg的LEO小卫星发射价格约是万美元,kg小卫星价格约是万美元。以星链计划为例,SpaceX计划发射的10颗kg近地小卫星总共发射成本约是.5亿美元,约合人民币亿元,小卫星寿命一般为5-8年。据SpaceX执行总裁马斯克透露,每60颗星链卫星可同时支持用户终端(每颗卫星支持终端接入)以最低25M/s的速度使用。从我国4G基站与SpaceX低轨小卫星几个指标对比可以看出其发展前景:

未来,随着以SpaceX为代表的商业可重复使用运载火箭的开发,可以使猎鹰9运载火箭的单次发射成本稳定在0万美元左右;按照每次发射60颗近地小卫星计算,单颗星链卫星的发射成本将降低到每颗50万美元左右,成本大大降低。

3.3低轨卫星市场规模巨大,前景广阔

根据全球互联网统计信息(InternetWorldStates)最新统计数据显示,年全球互联网渗透率为58.8%,全球仍有约31.8亿人口没有被互联网普及。其中,亚洲和非洲占据了全球72.1%的人口但互联网渗透率分别只有54.2%和39.6%,低于全球互联网渗透率的平均水平。照此计算,仅亚非两个大洲就拥有27.4亿未“互联”人口,约占全球互联网未普及人数的86%。由于地面基站易受地形和环境制约,这些地面信息系统无法覆盖的地区和人口将是卫星通信广阔的市场空间。

未完成互联网建设的国家主要是因为1.人口密度低,建立基站不合算2.人口密度高却缺少资金。但是由于联合国的网速统计标准是K,因此即使是被互联网覆盖的41.2%的人口中,仍有部分人口仍处于2G和3G之间。根据联合国统计数字,年3月份到年的3月份,互联网在非低收入国家,渗透率只增长了1%,在低收入国家,渗透率只增长了0.8%;因此现有的全球互联网建设遇到了瓶颈期,很难再有很大提升。因此,低轨卫星成为当前刚需。

年1月14日,欧洲咨询公司发布了最新的卫星制造与发射服务分析报告《年前卫星制造与发射》报告。报告预测,卫星市场将在卫星数量、价值和质量上发生根本性的变化,制造和发射的卫星数量将增加4.3倍,平均每年发射颗卫星,而前十年平均每年发射颗卫星。未来十年,该市场将达到亿美元,比前十年增长28%,前十年的总收入为亿美元。未来十年在Starlink、OneWeb、Kuiper、TelesatLEO和O3bmPower等宽带项目的驱动下,预计LEO和MEO星座占总需求的77%;低轨卫星市场规模巨大,前景广阔。

3.4多家国外公司投入低轨卫星研发,市场竞争激烈

为打开全球未“互联”的30亿潜在市场,多家海外公司已投入低轨卫星通信的研发中。年,在谷歌(Google)等互联网巨头的推动和支持下,一网公司(OneWeb)、太空探索公司(SpaceX)、三星、低轨卫星公司(Leosat)等多家企业提出打造由低轨小卫星组成的卫星星座,为全球提供互联网接入服务。提供互联网服务的卫星星座并不是一个新事物,20世纪90年代开始不断涌现提供通信和网络服务的卫星星座。

如果按照卫星与地面通信的竞争合作关系对卫星互联网星座的发展阶段进行划分,主要可以分为3个历史阶段:

1)第1阶段(20世纪80年代末至0年):以铱星(Iridium)、全球星(Globalstar)、轨道通信(Orb

分享 转发
TOP
发新话题 回复该主题